Programmatically Combatting Pseudorandom
Number Generators With Uniform Integer
Distributions: A Modern C++ Approach

Joshua A. Schiavone | jshschiavone @ gmail.com
Computational Research, DoubleThreat Security & Engineering
Toronto, Ontario, Canada

May 2, 2021

Abstract

Pseudorandom Number Generators come as a great assistance to pro-
grammers. Although, they come with a great deal of security flaws as they
do not truly generate a “random” sequence of numbers. The C++ Standard
Template Library provides a solution to this problem as programmers can
now implement more secure seed-able random number generators to pro-
vide a proper integer distribution of non-deterministic random values, to
better support their programming practices.

Keywords: pseudorandom, random, programming, programmers, numbers, pseu-
dorandom number generators, security, security flaws.

1 Introduction

Outline It has been demonstrated that PRNGs (Pseudorandom number genera-
tors) have been an adequate method of producing basic sequences of randomness
when security is not of a great concern. When developing a program that acts as
a Texas Holdem’ poker dealer, you would not want the players to guess the cards
with ease. Therefore, poker dealers must shuffle a deck of cards in such a way
that takes little computable inputs into account to make the card-guessing process
more strenuous on the players. This concept is similar when referring to random
number generators, we don’t want a variety of inputs that lead to a deterministic
result. This would put the individuals moderating the game at a great monetary
disadvantage. In statistical research, proper random number generation imple-
mentations are very crucial, especially in cryptographic algorithms. The goal for
this paper is to properly outline common mistakes that C++ programmers make
when implementing PRNGs, to theoretically define these flaws, and to provide

a superior solution — programmatically. Also, it is crucial to note that the pro-
grammatic solutions I will be providing will not be capable in generating true
randomness as that is never the case in computation. Computers are not random
machines, they are logic based. Therefore, my methodology defines better soft-
ware implementations that combat the use of a traditional PRNG, through modern
C++ features based around non-deterministic seeds and uniform integer distri-
butions. All of the mentioned provide non-substandard security features when
dealing with salient implementations.

2 Related Work

The methodology provided within this paper is related to the 2011 C++ standard
random template. The utilization of these template models tend to go unseen
for a vast majority of software engineers. My outline of it’s proper use through
uniform integer distributions correlate’s to Donald E. Knuth’s and Andrew C.
Yao’s, "The complexity of nonuniform random number generation. Algorithms
and Complexity: New Directions and Recent Results", 1976. In some sections of
this paper, I designed method’s to increase complexity through procedural sum-
mations as well as an organized container implementation through vector storage.

3 Common Pseudorandom Number Generators

Every PRNG shares the same design concept. As in most cases they all depend
on a seed which is the starting value for the PRNG function, and computes values
accordingly with respect to the seed value.

3.1 Linear Congruential Generator

The Linear Congruential Generator (also referred to as the LCG), is an algorithm
that produces a sequence of pseudorandom values with a discontinuous piecewise
linear equation [1]. It takes four mandatory inputs that are required to produce a
pseudorandom value. These inputs are, a modulus value, multiplier, incremental
constant, and a seed. The LCG is defined as:

Xni1 = (aX, +c¢) mod m

where X is the sequence of pseudorandom values, and:
m, 0 <m
a, 0<a<m
c, 0<c<m
Xo, 0<Xg<m

3.2 Middle-Square Algorithm

The middle-square method was invented by John von Neumann in 1949 as it
serves as another method to produce pseudorandom values. It comes with se-
vere design flaws as it takes a seed for an input, squares that seed, then extract
the middle portion of that result (with respect to the number of digits) and repeat
that process. The output of each previous result, will become the next seed. It is
obvious why the MSA is not implemented when security is of great concern. Note
that sequence generates a deterministic result that falls under, X,,,; € [0, 9999]
when computed traditionally.

4 Deterministic and Non-Deterministic Seeds

A function passed with a constant seed value will produce the same output value
every time the algorithm is computed. In terms of the LCG, X,,.; € [0, m — 1]
will always be true when the seed does not change. Let’s provide some inputs into
this PRNG,

m = 7829, a = 378, ¢ = 2310, X,, = 4321
Upon computing,
(4321 - 378 + 2310) mod 7829

We get 7216. This value will always remain the same due to the fact there isn’t
a true distribution of random values and it is always seed-dependant. Therefore,
0 S Xn+1 S m — 1.

4.1 Non-Deterministic Approach

A more logical approach is passing a seed through the Mersenne Twister Algo-
rithm from a generated uniform distribution of integers. The seed will be ran-
domly selected by the MTA and then can later be computed through a PRNG.

3

This makes the approach non-deterministic providing better security. A theoret-
ical example: MTA(T,.,) will represent our Mersenne Twister Algorithm that
takes some random number engine (crucial).

B(x) = X, € [min(R), max(R)]

, will represent our distribution range function where R is the bit length of whichever
type is passed through the algorithm. Lastly, we’ll evaluate,

Ve Bx), BIMTA,,,,)

In essence, we pass some random number engine through the MTA, then iterate
through a vector with respect to our uniform integer distribution and then compute
an MTA sequence for every x occurrence in our distribution.

4.1.1 Constructing Verbosity

If we wanted further complexity with a non-static vector (V) size, we can define a
procedural summation that can be computed as such:

b
> B(MTAx,), wheren € [Vi, V)]

n=1

In the case of gen_unbias_data (gen) where |V| = 5,

S B(MTAx,) = X, € Ba)+Xs € B(x)+Xs € Bla)+Xa € Bla)+Xs € (),

n=1
would suffice a complex iteration to provide more verbosity. If we wanted to

adhere to this, we can pass the summation as an argument to the MTA:

MTA[Y: A(MTAx,)

n=1

5 Effective Computation Through Uniform
Distributions

The C++ standard template library provides us with distribution engines that makes

use of a uniform discrete distribution. The std: :uniform int distribution

4

feature is a template that produces integer values according to a uniform discrete

distribution, in which it is described by the following probability mass function
[2]:
1

b—a+1’
This distribution produces some value k € [a, b] where each possible value has an
equal likelihood of being produced [2]. The goal for our C++ implementation is
to provide a sequence through a distribution where each integer in the distribution
has a probability of % of being produced. Thus, /{a, b} must support:

P(k|a,b) = a<k<b

ke{a,a+1, ..,0—1, b}

5.1 STL Implementation

Let’s represent our ((x) function previously introduced in section 3.1 as
gen_unbiased_data (gen) from a modernized perspective:

template <typename rand_type>

std :: uniform_int_distribution <rand_type >
gen_unbiased_data (
const std ::mtl9937 mtgenerator) {

std::uniform_int_distribution <rand_type >
distribution (
std :: numeric_limits <rand_type >::min() ,
std :: numeric_limits <rand_type >::max ())
return distribution ;

}

The above code sample generates a uniform integer distribution that takes in a
std: :mt 19937 which is C++’s representation of the Mersenne Twister Engine.
Now we must create a function to store our distribution into a vector container.
Although, before that iteration, to create a non-deterministic seed, we will pass an
std: :random_device object into the Mersenne Twister engine and then push
back elements into the vector with respect to our uniform integer distribution:

template <typename rand_type>
std :: vector <rand_type> gen_nd_vector (

std :: vector<rand_type>& dataset) {

std :: random_device rdevice;

std :: mt19937 mtgenerator (rdevice ());
auto dist = gen_unbiased_data<rand_type >(

mtgenerator) ;

for (auto elem = SET_BEGIN; elem < SET_SIZE;
++elem) {
dataset.push_back(dist(mtgenerator));

}

return dataset;

Note that the range of the iteration is between previously defined
macros, #define SET_BEGIN 0 and #define SET_SIZE 12 (Velem €
[V eChegin, Vecsize]). This is just a sample range for the vector. In continuation,
let’s compute the above code samples within our main () function:

int main(void) {
std :: vector<short> dataset;
gen_nd_vector<short> (dataset);

for (const auto& content : dataset) {
std :: cout << content << ;

}

6 Results

Here is the output after each test case. Note: a new test case begins each time the
program is executed.

Test Case Output of: gen nd vector<rand type>(std::mtl%5937)

Case | 22782 20067 27385 17392 -5306 10430 2267 -17873 -6163 14796 -7473
25514

Case 2 -H66 3325 12598 -11171 -11805 -14701 21044 -27357 -0424 -12691 31450
-2479

Case 3 -20485 -2225 -27266 -27704 29701 -27773 -4999 -19936 587 31796 13820
-11365

Case 4 5008 -31059 -24342 5234 -28484 -26810 30440 -6193 6239 -6045 -31900
-9339

Case 5 19381 -25926 1628 1288 3769 20582 6060 -15384 -32708 31558 -28763
-30383

Table 1: 3(x) case observations
It is clear that the data presented is indeed sequences of randomness and when
tested with a large quantity of test cases and elements, it increases the complexity
of predicting the outcome of the next iteration. This is the sheer power that
non-deterministic seeds hold and how providing a non-deterministic seed through
a uniform integer distribution, that creates an un-bias, can improve security. This
is especially crucial when cryptographic implementations are taken into account.

7 Cryptographic Security Concerns

The Mersenne Twister Algorithm is one of the most notable random number gen-
erators. Although, it does bring the security concern of seed-predicting which
makes it not cryptographically secure — when implemented by itself. With the
examples provided in 3.1 — 4.1, it essentially makes the MTA prone to a lot less
security concerns. Without the implementation of std: : random_device, the
Mersenne Twister Algorithm would be a very poor choice to implement in any
software that takes security into account.

7.1 Notable Flaws

A. The most obvious reason why Mersenne Twister on its own is not crypto-
graphically secure is due to the fact that it’s based off of a linear recursion. The
MTA produces a a long sequence of outputs which one can easily implement as
predefinitions to predicting the next output. The basics of a recurrence relation is
described as such:

an equation that expresses each element of a sequence as a function of the
proceeding ones. A recurrence relation has the form [3]:

Un = (1, un—1) forn >0

where,
w:NxX — X,

is a function, where X is a set to which the elements of a sequence must belong
[3]. To put this referenced definition into perspective, the factorial function is also
defined by the recurrence relation:

n!=n(n—1)! forn >0

B. It is also known that recursive algorithms do not bring the best performance,
but that is normally input dependant. In terms of computation, recursion can also
exceed the maximum size container of the call stack — which is not ideal. For a
program that just has the goal of a producing a sequence of integers that appear
random to the user, using the Mersenne Twister Algorithm is perfectly fine. It
provides a fair bit of complexity in which it can make the average user think they
are observing pure randomness, although through computation and recursion we
know that it’s not the case whatsoever. In theory, iteration algorithms take less
time to compute over a given data set than recursive algorithm. Although, the
computational speed of the Mersenne Twister Algorithm is relatively fast when
fed with a small container size.

After initialization, MTA produces a state, than a recursive twist, produces
another state with random values, recursive twist, and than it repeats itself.
The previous always occurs after a given seed is initialized (traditionally —
non-deterministic.

The visual steps that the MTA takes to produce randomness are as such:

Imtiahze
Seed »| State

Random state Twist
then repeat.

| fand State

Twist

Figure 1: MTA procedural steps via flow chart visualization

8 True Randomness vs. Pseudo-Randomness

As pointed out in section 1, true randomness cannot be generated by a computer
on its own. We can only retrieve pseudo-randomness which in a sense is an em-
ulated sequence that just appears random. Generating true random numbers can
only be done by an external hardware device that generates a random number from
physical phenomena rather than a computable algorithm. For example, a device
that produces random numbers based on radio frequencies is considered a true
random number generator as RFs are not step-oriented, and cannot be reversed or
guessed. Pseudorandom number generators were developed as an assistance for
individuals who do not have access to such hardware devices, so they developed
PRNGs to emulate randomness to users. The best true hardware random number
generators stem from quantum random properties. This is because quantum me-
chanical physical randomness cannot be predicted as in a lot of cases they occur
in the atomic or sub-atomic level. Popular quantum phenomena methods include:
a. Semi-transparent mirror containing traveling photons. b. Shot noise: a quan-

9

tum mechanical noise source in electronic circuits. ¢. Vacuum energy fluctuation
detection. d. Nuclear decay radiation source.

9 Success Strategies For C++ Programmers

For programmers who would like to have random number implementations into
there software, avoid 1-2 and utilize method 3:

1. std::rand (), srand () and rand (). As they all require a determinis-
tic seed and a basic PRNG implementation. They also lack a proper integer
distribution.

2. Avoid using a pseudorandom number generator by itself. The best imple-
mentation is when assisted with an integer distribution.

3. For producing random sequences, generate a new random integer (with re-
spect to the distribution) and store that integer one by one, into a container.
As this is very efficient when using the MTA as the time it takes to produce
N is O(1). Note: the complexity for the whole process is in linear time.

10 Conclusions

The methodology provided in this paper demonstrates that the templates in
<random> provides programmers with a better alternative to std: : rand (). It
gives C++ programmers the capabilities of producing a more secure mechanism of
generating pseudorandom sequences through uniform integer distributions. It has
been highlighted that using a uniform distribution prevents a PRNG bias caused by
deterministic seeds. Therefore, we theoretically defined a function 5(z), that fills
a vector with a secure sequence of pseudo randomness from the non-deterministic
random engine, T,., . My goal from this research is to exaggerate overlooked
STL features that should be implemented in software where security is of great
concern when random numbers are in question.

Acknowledgements

I’d like to thank the people at DoubleThreat Security Engineering in Toronto,
Canada that made this paper possible. Also, I’d like to thank my GitHub con-

10

tributors who provided me with the motivation to creating this paper to greater
assist C++ programmers that are curious in seeking superior methods to combat
PRNGs.

References

[1] Linear Congruential Generator - Wikipedia
https://en.wikipedia.org/wiki/Linear_congruential_generator

[2] uniform_int_distribution - C++ Reference
https://www.cplusplus.com/reference/random/uniform_int_distribution

[3] Recurrence Relation - Wikipedia
https://en.wikipedia.org/wiki/Recurrence_relation

[4] Luc Devroye. Non-Uniform Random Variate Generation. Springer-Verlag,
New York, 1986

[5] Donald E. Knuth and Andrew C. Yao. The complexity of nonuniform random

number generation. Algorithms and Complexity: New Directions and Recent
Results. pages 357-428, 1976.

[6] John von Neumann. Various techniques used in connection with random dig-
its. Applied Math Series. 1951

11

